presiden juga pernah nakal

13 March 2013 19:02:24 Dibaca : 2143

Masa anak-anak adalah masa yang penuh dengan cerita kehidupan yang sangat dominan dengan rasa ingin bermain. Mencoba hal-hal baru dan sering mengabaikan kesehatan dan kesalamatan. Sikap anak-anak yang perlu didikan orang tua.

Peranan orang tua sangat di perlukan untuk membimbing masa pertumbuhan anaknya, mengawasi kegiatan yang dia lakukan dan paling utama menjaga keselamatannya.

Memahami sifat anak-anak memang sangat sulit tetapi orang tualah yang lebih tau pasti dengan sifat anaknya. Sifat anak yang suka rewel kadang membuat orang tua menjadi bingung harus berbuat apa.

Di masa anak-anak kita pasti punya cerita sendiri tentang masa kecil kita, cerita lucu, bahkan cerita kenakalan. Hehehe maklum masih anak-anak.

Status sebagai anak itulah yang menjadi patokan untuk semua orang bahwa anak kecil jika nakal orang menganggap itu wajr saja seharusnya kita harus mampu menjadikan anak kita agar menjadi anak yang berperilaku baik. Memang tidak bisa di pungkiri jika semua anak-anak pasti pernah nakal juga.

Hal yang tidak mungkin seorang presiden di masa kecilnya tidak pernah nakal atau bandel. Akan tetapi semua itu hanya orang tua masing-masing yang lebih tau.

Sekian dulu... mohon maf jika ada kata-kata yang salah... by rolis

jangan buru-buru

08 March 2013 13:36:00 Dibaca : 1117

        Keberangkatan kuliah bukanlah soal yang harus di di pikirkan terlalu serius. Semua orang punya kesibukannya maisng-masing begitu pula dengan seorang dosen jadi jika anda ingin peregi kuliah jangan terlalu di pikirkan untuk masuk kuliah. Ini bukan mengajarkan anda untuk menjadi seorang pemalas akan tetapi jika anda berpikir kuliah akan segera mawsuk dan anda sudah buru-buru maka ada-ada saja hal yang akan terjadi. Contoh kecil saja adalah lupa memakai kaus kaki bahkan hal yang tidak mungkin jika anda lupa pakai celana.

        Nantinya ini akan menjadi peristiwa yang sangat memalukan untuk anda dan menjadi hal yang sangat lucu. Jadi jika anda ingin pergi kuliah biasakan tetap santai dan rilex akan tetapi harus tepat waktu pula datang ke dalam kelas. Barusan saya pergi kuliah dan begitu buru-buru sebab saya harus shalat jum’at dulu. Di perjalanan teman saya mengendarai motornya dengan kecepatan yang tinggi sehingga saya yang membonceng hampir saja jatuh ketika melewati sebuah gundukan jalan yang kecil. Oleh karena itu saya merasa ini perlu anda ketahui agar anda tidak perlu buru-buru jika dalam melakukan sesuatu.

Sekian dulu... semoga bermanfaat.. by rolis

biologi melekuler

06 March 2013 09:03:50 Dibaca : 2510

Ini juga materi kuliah saya yang saya ambil dari sumber lain.. sama seperti materi lain ssebagai pembelajaran juga buat saya......

Sejarah dan Ruang Lingkup

Bab ini berisi pokok bahasan mengenai ruang lingkup dan perkembangan Biologi Molekuler serta hubungannya dengan ilmu-ilmu lain, tinjauan sekilas tentang sel yang meliputi perbedaan antara prokariot dan eukariot, diferensiasi dan organel subseluler pada eukariot. Selain itu, sekilas juga dibahas tiga di antara makromolekul hayati, yaitu polisakarida, lemak, dan protein. Setelah mempelajari pokok bahasan di dalam bab ini mahasiswa diharapkan mampu menjelaskan:

1. ruang lingkup, perkembangan, dan hubungan Biologi Molekuler dengan disiplin ilmu lainnya,

2. ciri-ciri sel prokariot,

3. ciri-ciri sel eukariot,

4. perbedaan antara sel prokariot dan eukariot,

5. macam-macam organel subseluler pada sel eukariot,

6. struktur molekul polisakarida penting seperti amilum dan selulosa,

7. struktur molekul lemak,

8. perbedaan antara lemak hewani dan lemak nabati,

9. struktur molekul protein, dan

10. macam-macam asam amino penyusun protein

Agar dapat memahami pokok bahasan ini dengan lebih baik mahasiswa disarankan untuk mempelajari kembali klasifikasi seluler dan makromolekul hayati seperti yang telah diberikan pada mata kuliah Biologi Sel dan Biokimia. Urutan bahasan di dalam bab ini adalah ruang lingkup, perkembangan, dan hubungan Biologi Molekuler dengan ilmu lain, tinjauan sekilas tentang sel, dan makromolekul hayati.

Ruang Lingkup, Perkembangan, dan Hubungan dengan Ilmu Lain

Biologi Molekuler merupakan cabang ilmu pengetahuan yang mempelajari hubungan antara struktur dan fungsi molekul-molekul hayati serta kontribusi hubungan tersebut terhadap pelaksanaan dan pengendalian berbagai proses biokimia. Secara lebih ringkas dapat dikatakan bahwa Biologi Molekuler mempelajari dasar-dasar molekuler setiap fenomena hayati. Oleh karena itu, materi kajian utama di dalam ilmu ini adalah makromolekul hayati, khususnya asam nukleat, serta proses pemeliharaan, transmisi, dan ekspresi informasi hayati yang meliputi replikasi, transkripsi, dan translasi.

Meskipun sebagai cabang ilmu pengetahuan tergolong relatif masih baru, Biologi Molekuler telah mengalami perkembangan yang sangat pesat semenjak tiga dasawarsa yang lalu. Perkembangan ini terjadi ketika berbagai sistem biologi, khususnya mekanisme alih informasi hayati, pada bakteri dan bakteriofag dapat diungkapkan. Begitu pula, berkembangnya teknologi DNA rekombinan, atau dikenal juga sebagai rekayasa genetika, pada tahun 1970-an telah memberikan kontribusi yang sangat besar bagi perkembangan Biologi Molekuler. Pada kenyataannya berbagai teknik eksperimental baru yang terkait dengan manipulasi DNA memang menjadi landasan bagi perkembangan ilmu ini.

Biologi Molekuler sebenarnya merupakan ilmu multidisiplin yang melintasi sejumlah disiplin ilmu terutama Biokimia, Biologi Sel, dan Genetika. Akibatnya, seringkali terjadi tumpang tindih di antara materi-materi yang dibahas meskipun seharusnya ada batas-batas yang memisahkannya. Sebagai contoh, reaksi metabolisme yang diatur oleh pengaruh konsentrasi reaktan dan produk adalah materi kajian Biokimia. Namun, apabila reaksi ini dikatalisis oleh sistem enzim yang mengalami perubahan struktur, maka kajiannya termasuk dalam lingkup Biologi Molekuler. Demikian juga, struktur komponen intrasel dipelajari di dalam Biologi Sel, tetapi keterkaitannya dengan struktur dan fungsi molekul kimia di dalam sel merupakan cakupan studi Biologi Molekuler. Komponen dan proses replikasi DNA dipelajari di dalam Genetika, tetapi macam-macam enzim DNA polimerase beserta fungsinya masing-masing dipelajari di dalam Biologi Molekuler.

Beberapa proses hayati yang dibahas di dalam Biologi Molekuler bersifat sirkuler. Untuk mempelajari replikasi DNA, misalnya, kita sebaiknya perlu memahami mekanisme pembelahan sel. Namun sebaliknya, alangkah baiknya apabila pengetahuan tentang replikasi DNA telah dikuasai terlebih dahulu sebelum kita mempelajari pembelahan sel.

Tinjauan Sekilas tentang Sel

Oleh karena sebagian besar makromolekul hayati terdapat di dalam sel, maka kita perlu melihat kembali sekilas mengenai sel, terutama dalam kaitannya sebagai dasar klasifikasi organisme. Berdasarkan atas struktur selnya, secara garis besar organisme dapat dibagi menjadi dua kelompok, yaitu prokariot dan eukariot. Di antara kedua kelompok ini terdapat kelompok peralihan yang dinamakan Archaebacteria atau Archaea.

Prokariot

Prokariot merupakan bentuk sel organisme yang paling sederhana dengan diameter dari 1 hingga 10 µm. Struktur selnya diselimuti oleh membran plasma (membran sel) yang tersusun dari lemak lapis ganda. Di sela-sela lapisan lemak ini terdapat sejumlah protein integral yang memungkinkan terjadinya lalu lintas molekul-molekul tertentu dari dalam dan ke luar sel. Kebanyakan prokariot juga memiliki dinding sel yang kuat di luar membran plasma untuk melindungi sel dari lisis, terutama ketika sel berada di dalam lingkungan dengan osmolaritas rendah.

Bagian dalam sel secara keseluruhan dinamakan sitoplasma atau sitosol. Di dalamya terdapat sebuah kromosom haploid sirkuler yang dimampatkan dalam suatu nukleoid (nukleus semu), beberapa ribosom (tempat berlangsungnya sintesis protein), dan molekul RNA. Kadang-kadang dapat juga dijumpai adanya plasmid (molekul DNA sirkuler di luar kromosom). Beberapa di antara molekul protein yang terlibat dalam berbagai reaksi metabolisme sel nampak menempel pada membran plasma, tetapi tidak ada struktur organel subseluler yang dengan jelas memisahkan berlangsungnya masing-masing proses metabolisme tersebut.

Permukaan sel prokariot adakalanya membawa sejumlah struktur berupa rambut-rambut pendek yang dinamakan pili dan beberapa struktur rambut panjang yang dinamakan flagela. Pili memungkinkan sel untuk menempel pada sel atau permukaan lainnya, sedangkan flagela digunakan untuk berenang apabila sel berada di dalam media cair.

Sebagian besar prokariot bersifat uniseluler meskipun ada juga beberapa yang mempunyai bentuk multiseluler dengan sel-sel yang melakukan fungsi-fungsi khusus. Prokariot dapat dibagi menjadi dua subdivisi, yaitu Eubacteria dan Archaebacteria atau Archaea. Namun, di atas telah disinggung bahwa Archaea merupakan kelompok peralihan antara prokariot dan eukariot. Dilihat dari struktur selnya, Archaea termasuk dalam kelompok prokariot, tetapi evolusi molekul rRNA-nya memperlihatkan bahwa Archaea lebih mendekati eukariot.

Perbedaan antara Eubacteria dan Archaea terutama terletak pada sifat biokimianya. Misalnya, Eubacteria mempunyai ikatan ester pada lapisan lemak membran plasma, sedangkan pada Archaea ikatan tersebut berupa ikatan eter.

Salah satu contoh Eubacteria (bakteri), Escherichia coli, mempunyai ukuran genom (kandungan DNA) sebesar 4.600 kilobasa (kb), suatu informasi genetik yang mencukupi untuk sintesis sekitar 3.000 protein. Aspek biologi molekuler spesies bakteri ini telah sangat banyak dipelajari. Sementara itu, genom bakteri yang paling sederhana, Mycoplasma genitalium, hanya terdiri atas 580 kb DNA, suatu jumlah yang hanya cukup untuk menyandi lebih kurang 470 protein. Dengan protein sesedikit ini spesies bakteri tersebut memiliki kemampuan metabolisme yang sangat terbatas.

Kelompok Archaea biasanya menempati habitat ekstrim seperti suhu dan salinitas tinggi. Salah satu contoh Archaea, Methanocococcus jannaschii, mempunyai genom sebesar 1.740 kb yang menyandi 1.738 protein. Bagian genom yang terlibat dalam produksi energi dan metabolisme cenderung menyerupai prokariot, sedangkan bagian genom yang terlibat dalam replikasi, transkripsi, dan translasi cenderung menyerupai eukariot.

Eukariot

Secara taksonomi eukariot dikelompokkan menjadi empat kingdom, masing-masing hewan (animalia), tumbuhan (plantae), jamur (fungi), dan protista, yang terdiri atas alga dan protozoa. Salah satu ciri sel eukariot adalah adanya organel-organel subseluler dengan fungsi-fungsi metabolisme yang telah terspesialisasi. Tiap organel ini terbungkus dalam suatu membran. Sel eukariot pada umumnya lebih besar daripada sel prokariot. Diameternya berkisar dari 10 hingga 100 µm. Seperti halnya sel prokariot, sel eukariot diselimuti oleh membran plasma. Pada tumbuhan dan kebanyakan fungi serta protista terdapat juga dinding sel yang kuat di sebelah luar membran plasma. Di dalam sitoplasma sel eukariot selain terdapat organel dan ribosom, juga dijumpai adanya serabut-serabut protein yang disebut sitoskeleton. Serabut-serabut yang terutama berfungsi untuk mengatur bentuk dan pergerakan sel ini terdiri atas mikrotubul (tersusun dari tubulin) dan mikrofilamen (tersusun dari aktin).

Sebagian besar organisme eukariot bersifat multiseluler dengan kelompok-kelompok sel yang mengalami diferensiasi selama perkembangan individu. Peristiwa ini terjadi karena pembelahan mitosis akan menghasilkan sejumlah sel dengan perubahan pola ekspresi gen sehingga mempunyai fungsi yang berbeda dengan sel asalnya. Dengan demikian, kandungan DNA pada sel-sel yang mengalami diferensiasi sebenarnya hampir selalu sama, tetapi gen-gen yang diekspresikan berbeda antara satu dan lainnya.

Diferensiasi diatur oleh gen-gen pengatur perkembangan. Mutasi yang terjadi pada gen-gen ini dapat mengakibatkan abnormalitas fenotipe individu, misalnya tumbuhnya kaki di tempat yang seharusnya digunakan untuk antena pada lalat Drosophila. Namun, justru dengan mempelajari mutasi pada gen-gen pengatur perkembangan, kita dapat memahami berlangsungnya proses perkembangan embrionik.

Pada organisme multiseluler koordinasi aktivitas sel di antara berbagai jaringan dan organ diatur oleh adanya komunikasi di antara sel-sel tersebut. Hal ini melibatkan molekul-molekul sinyal seperti neurotransmiter, hormon, dan faktor pertumbuhan yang disekresikan oleh suatu jaringan dan diteruskan kepada jaringan lainnya melalui reseptor yang terdapat pada permukaan sel.

Organel subseluler

Pada eukariot terdapat sejumlah organel subseluler seperti nukleus, mitokondria, kloroplas, retikulum endoplasmik, dan mikrobodi. Masing-masing akan kita bicarakan sepintas berikut ini.

Nukleus mengandung sekumpulan DNA seluler yang dikemas dalam beberapa kromosom. Di dalam nukleus terjadi transkripsi DNA menjadi RNA dan prosesing RNA. Selain DNA, di dalam nukleus juga terdapat nukleolus yang merupakan tempat berlangsungnya sintesis rRNA dan perakitan ribosom secara parsial.

Mitokondria merupakan tempat berlangsungnya respirasi seluler, yang melibatkan oksidasi nutrien menjadi CO2 dan air dengan membebaskan molekul ATP. Secara evolusi organel ini berasal dari simbion-simbion prokariotik yang tetap mempertahankan beberapa DNA, RNA, dan mesin sintesis proteinnya. Meskipun demikian, sebagian besar proteinnya disandi oleh DNA di dalam nukleus. Sementara itu, kloroplas merupakan tempat berlangsungnya proses fotosintesis pada tumbuhan dan alga. Pada dasarnya kloroplas memiliki struktur yang menyerupai mitokondria dengan sistem membran tilakoid yang berisi klorofil. Seperti halnya mitokondria, kloroplas juga mempunyai DNA sendiri sehingga kedua organel ini sering dinamakan organel otonom.

Retikulum endoplasmik merupakan sistem membran sitoplasmik yang meluas dan menyambung dengan membran nukleus. Ada dua macam retikulum endoplasmik, yaitu retikulum endoplasmik halus yang membawa banyak enzim untuk reaksi biosintesis lemak dan metabolisme xenobiotik dan retikulum endoplasmik kasar yang membawa sejumlah ribosom untuk sintesis protein membran. Protein-protein ini diangkut melalui vesikula transpor menuju kompleks Golgi untuk prosesing lebih lanjut dan pemilahan sesuai dengan tujuan akhirnya masing-masing.

Mikrobodi terdiri atas lisosom, peroksisom, dan glioksisom. Lisosom berisi enzim-enzim hidrolitik yang dapat memecah karbohidrat, lemak, protein, dan asam nukleat. Organel ini bekerja sebagai pusat pendaurulangan makromolekul yang berasal dari luar sel atau organel-organel lain yang rusak. Sementara itu, peroksisom berisi enzim-enzim yang dapat mendegradasi hidrogen peroksida dan radikal bebas yang sangat reaktif. Glioksisom adalah peroksisom pada tumbuhan yang mengalami spesialisasi menjadi tempat berlangsungnya reaksi daur glioksilat.

Makromolekul

Secara garis besar makromolekul hayati meliputi polisakarida, lemak, protein, dan asam nukleat. Selain itu, terdapat pula makromolekul kompleks, yang merupakan gabungan dua atau lebih di antara makromolekul tersebut.

Polisakarida

Polisakarida merupakan polimer beberapa gula sederhana yang satu sama lain secara kovalen dihubungkan melalui ikatan glikosidik. Makromolekul ini terutama berfungsi sebagai cadangan makanan dan materi struktural.

Selulosa dan pati (amilum) sangat banyak dijumpai pada tumbuhan. Kedua-duanya adalah polimer glukosa, tetapi berbeda macam ikatan glikosidiknya. Pada selulosa monomer-monomer glukosa satu sama lain dihubungkan secara linier oleh ikatan 1,4 b glikosidik, sedangkan pada amilum ada dua macam ikatan glikosidik karena amilum mempunyai dua komponen, yaitu a-amilosa dan amilopektin. Monomer-monomer glukosa pada a-amilosa dihubungkan oleh ikatan 1,4 a glikosidik, sedangkan pada amilopektin, yang merupakan rantai cabang amilum, ikatannya adalah 1,6 a glikosidik.

Pada tumbuhan selulosa merupakan komponen utama penyusun struktur dinding sel. Sekitar 40 rantai molekul selulosa tersusun paralel membentuk lembaran-lembaran horizontal yang dihubungkan oleh ikatan hidrogen sehingga menghasilkan serabut-serabut tak larut yang sangat kuat. Sementara itu, amilum berguna sebagai cadangan makanan yang dapat dijumpai dalam bentuk butiran-butiran besar di dalam sel. Adanya dua macam ikatan glikosidik pada amilum menjadikan molekul ini tidak dapat dikemas dengan konformasi yang kompak. Oleh karena itu, amilum mudah larut di dalam air.

Fungi dan beberapa jaringan hewan menyimpan cadangan makanan glukosa dalam bentuk glikogen, yang mempunyai ikatan glikosidik seperti pada amilopektin. Polisakarida lainnya, kitin merupakan komponen utama penyusun dinding sel fungi dan eksoskeleton pada serangga dan Crustacea. Kitin mempunyai struktur molekul menyerupai selulosa, hanya saja monomernya berupa N-asetilglukosamin. Mukopolisakarida (glikosaminoglikan) membentuk larutan seperti gel yang di dalamnya terdapat protein-protein serabut pada jaringan ikat.

Penentuan struktur polisakarida berukuran besar sangatlah rumit karena ukuran dan komposisinya sangat bervariasi. Selain itu, berbeda dengan protein dan asam nukleat, makromolekul ini tidak dapat dipelajari secara genetik.

Lemak (lipid)

Molekul lemak berukuran besar terutama berupa hidrokarbon yang sukar larut dalam air. Beberapa di antaranya terlibat dalam penyimpanan dan transpor energi, sementara ada juga yang menjadi komponen utama membran, lapisan pelindung, dan struktur sel lainnya.

Struktur umum lemak adalah gliserida dengan satu, dua, atau tiga asam lemak rantai panjang yang mengalami esterifikasi pada suatu molekul gliserol. Pada trigliserida hewan, asam lemaknya jenuh (tanpa ikatan rangkap) sehingga rantai molekulnya berbentuk linier dan dapat dikemas dengan kompak menghasilkan lemak berwujud padat pada suhu ruang. Sebaliknya, minyak tumbuhan mengandung asam lemak tak jenuh dengan satu atau lebih ikatan rangkap sehingga rantai molekulnya sulit untuk dikemas dengan kompak, membuat lemak yang dihasilkan berwujud cair pada suhu ruang.

Membran plasma dan membran organel subseluler mengandung fosfolipid, berupa gliserol yang teresterifikasi pada dua asam lemak dan satu asam fosfat. Biasanya, fosfat ini juga teresterifikasi pada suatu molekul kecil seperti serin, etanolamin, inositol, atau kolin (Gambar 1.4). Membran juga mengandung sfingolipid, misalnya seramid, yang salah satu asam lemaknya dihubungkan oleh ikatan amida. Pengikatan fosfokolin pada seramid akan menghasilkan sfingomielin.

Protein

Secara garis besar dapat dibedakan dua kelompok protein, yaitu protein globuler dan protein serabut (fibrous protein). Protein globuler dapat dilipat dengan kompak dan di dalam larutan lebih kurang berbentuk seperti partikel-partikel bulat. Kebanyakan enzim merupakan protein globuler. Sementara itu, protein serabut mempunyai nisbah aksial (panjang berbanding lebar) yang sangat tinggi dan seringkali merupakan protein struktural yang penting, misalnya fibroin pada sutera dan keratin pada rambut dan bulu domba.

Ukuran protein berkisar dari beberapa ribu Dalton (Da), misalnya hormon insulin yang mempunyai berat molekul 5.734 Da, hingga sekitar 5 juta Da seperti pada kompleks enzim piruvat dehidrogenase. Beberapa protein berikatan dengan materi nonprotein, baik dalam bentuk gugus prostetik yang dapat bekerja sebagai kofaktor enzim maupun dalam asosiasi dengan molekul berukuran besar seperti pada lipoprotein (dengan lemak) atau glikoprotein (dengan karbohidrat).

Protein tersusun dari sejumlah asam amino yang satu sama lain dihubungkan secara kovalen oleh ikatan peptida. Ikatan ini menghubungkan gugus a-karboksil pada suatu asam amino dengan gugus a-amino pada asam amino berikutnya sehingga menghasilkan suatu rantai molekul polipeptida linier yang mempunyai ujung N dan ujung C. Tiap polipeptida biasanya terdiri atas 100 hingga 1.500 asam amino. Struktur molekul protein seperti ini dinamakan struktur primer.

Polaritas yang tinggi pada gugus C=O dan N-H di dalam tiap ikatan peptida, selain menjadikan ikatan tersebut sangat kuat, juga memungkinkan terbentuknya sejumlah ikatan hidrogen di antara asam-asam amino pada jarak tertentu. Dengan demikian, rantai polipeptida dapat mengalami pelipatan menjadi suatu struktur yang dipersatukan oleh ikatan-ikatan hidrogen tersebut. Struktur semacam ini merupakan struktur sekunder molekul protein.

Struktur sekunder yang paling dikenal adalah a-heliks. Rantai polipeptida membentuk heliks (spiral) putar kanan dengan 3,6 asam amino per putaran sebagai akibat terjadinya ikatan hidrogen antara gugus N-H pada suatu residu asam amino (n) dan gugus C=O pada asam amino yang berjarak tiga residu dengannya (n+3). Struktur a-heliks banyak dijumpai terutama pada protein-protein globuler.

Di samping a-heliks, terdapat juga struktur sekunder yang dinamakan lembaran b (b-sheet). Struktur ini terbentuk karena gugus N-H dan C=O pada suatu rantai polipeptida dihubungkan oleh ikatan hidrogen dengan gugus-gugus yang komplementer pada rantai polipeptida lainnya. Jadi, gugus N-H berikatan dengan C=O dan gugus C=O berikatan dengan N-H sehingga kedua rantai polipeptida tersebut membentuk struktur seperti lembaran dengan rantai samping (R) mengarah ke atas dan ke bawah lembaran. Jika kedua rantai polipeptida mempunyai arah yang sama, misalnya dari ujung N ke ujung C, maka lembarannya dikatakan bersifat paralel. Sebaliknya, jika kedua rantai polipeptida mempunyai arah berlawanan, maka lembarannya dikatakan bersifat antiparalel. Lembaran bmerupakan struktur yang sangat kuat dan banyak dijumpai pada protein-protein struktural, misalnya fibroin sutera.

Kolagen, suatu protein penyusun jaringan ikat, mempunyai struktur sekunder yang tidak lazim, yaitu heliks rangkap tiga. Tiga rantai polipeptida saling berpilin sehingga membuat molekul tersebut sangat kuat.

Beberapa bagian struktur sekunder dapat mengalami pelipatan sehingga terbentuk struktur tiga dimensi yang merupakan struktur tersier molekul protein. Sifat yang menentukan struktur tersier suatu molekul protein telah ada di dalam struktur primernya. Begitu diperoleh kondisi yang sesuai, kebanyakan polipeptida akan segera melipat menjadi struktur tersier yang tepat karena biasanya struktur tersier ini merupakan konformasi dengan energi yang paling rendah. Akan tetapi, secara in vivo pelipatan yang tepat seringkali dibantu oleh protein-protein tertentu yang disebut kaperon.

Ketika pelipatan terjadi, asam-asam amino dengan rantai samping hidrofilik akan berada di bagian luar struktur dan asam-asam amino dengan rantai samping hidrofobik berada di dalam struktur. Hal ini menjadikan struktur tersier sangat stabil. Di antara sejumlah rantai samping asam-asam amino dapat terjadi berbagai macam interaksi nonkovalen seperti gaya van der Waals, ikatan hidrogen, jembatan garam elektrostatik antara gugus-gugus yang muatannya berlawanan, dan interaksi hidrofobik antara rantai samping nonpolar pada asam amino alifatik dan asam amino aromatik. Selain itu, ikatan disulfida (jembatan belerang) kovalen dapat terjadi antara dua residu sistein yang di dalam struktur primernya terpisah jauh satu sama lain.

Banyak molekul protein yang tersusun dari dua rantai polipeptida (subunit) atau lebih. Subunit-subunit ini dapat sama atau berbeda. Sebagai contoh, molekul hemoglobin mempunyai dua rantai a-globin dan dua rantai b-globin. Interaksi nonkovalen dan ikatan disulfida seperti yang dijumpai pada struktur tersier terjadi pula di antara subunit-subunit tersebut, menghasilkan struktur yang dinamakan struktur kuaterner molekul protein. Dengan struktur kuaterner dimungkinkan terbentuknya molekul protein yang sangat besar ukurannya. Selain itu, fungsionalitas yang lebih besar juga dapat diperoleh karena adanya penggabungan sejumlah aktivitas yang berbeda. Modifikasi interaksi di antara subunit-subunit oleh pengikatan molekul-molekul kecil dapat mengarah kepada efek alosterik seperti yang terlihat pada regulasi enzim.

Di dalam suatu rantai polipeptida dapat dijumpai adanya unit-unit struktural dan fungsional yang semi-independen. Unit-unit ini dikenal sebagai domain. Apabila dipisahkan dari rantai polipeptida, misalnya melalui proteolisis yang terbatas, domain dapat bertindak sebagai protein globuler tersendiri. Sejumlah protein baru diduga telah berkembang melalui kombinasi baru di antara domain-domain. Sementara itu, pengelompokan elemen-elemen struktural sekunder yang sering dijumpai pada protein globuler dikenal sebagai motif (struktur supersekunder). Contoh yang umum dijumpai adalah motif bab, yang terdiri atas dua struktur sekunder berupa lembaran b yang dihubungkan oleh sebuah a-heliks. Selain domain dan motif, ada pula famili protein, yang dihasilkan dari duplikasi dan evolusi gen seasal. Sebagai contoh, mioglobin, rantai a- dan b-globin pada hemoglobin orang dewasa, serta rantai g-, e-, dan z-globin pada hemoglobin janin merupakan polipeptida-polipeptida yang berkerabat di dalam famili globin.

Asam amino

Di atas telah dikatakan bahwa protein merupakan polimer sejumlah asam amino. Bahkan ketika membicarakan struktur molekul protein, khususnya struktur sekunder dan tersier, kita telah menyinggung beberapa istilah yang berkaitan dengan struktur asam amino seperti rantai samping, gugus karboksil, dan gugus amino. Oleh karena itu, berikut ini akan dibahas sekilas struktur molekul asam amino.

Kecuali prolin, dari 20 macam asam amino yang menyusun protein terdapat struktur molekul umum berupa sebuah atom karbon (a-karbon) yang keempat tangannya masing-masing berikatan dengan gugus karboksil (COO-), gugus amino (NH3+), proton (H), dan rantai samping (R). Selain pada glisin, atom a-karbon bersifat khiral (asimetrik) karena keempat tangannya mengikat gugus yang berbeda-beda. Pada glisin gugus R-nya berupa proton sehingga dua tangan pada atom a-karbon mengikat gugus yang sama.

Perbedaan antara asam amino yang satu dan lainnya ditentukan oleh gugus R-nya. Gugus R ini dapat bermuatan positif, negatif, atau netral sehingga asam amino yang membawanya dapat bersifat asam, basa, atau netral.

Sumber: www.biologi dan molekukuler tanaman

Semoga bermanfaat....

gembok sendal

06 March 2013 07:53:03 Dibaca : 1121

 

asalamualaikum wr.wb...

maraknya berita heboh pencurian sandal menjadi perhatian sebagian besar masyarakat. sebab pendakwaan terhadap pencuri sandal yang terjadi indonesia sudah terjadi dan pendakwaan ini menjadi perhatian besar. jika di lihat dari sisi kemanusian yang di penuhi dengan perasaan mungkin anda berpikir bahwa untuk apa orang yang mencuri sandal di dakwa dengan hukuman penjara sedangkan di negeri kita ini begitu banyak para koruptor yang ongkang kaki di rumah mewah.

tapi perbuatan mencuri sandal juga tidak harus di bela sebab ini juga melanggar hukum setidaknya ada penjerhan terhadap pencuri-pencuri sandal apalagi untuk pencuri uang rakyat.

dari gambar di atas menunjukan bahwa sendal sekarang sudah perlu di jaga dengan cara di kunci dengan gembok yang besar agar tidak hilang. hal ini tentunya menjadi satu hal yang sangat lucu jika kita lakukan. akan tetapi ini hanya salah satu cara untuk menjaga sendal kita agar tidak hilang.


jika di bayangkan semua sendal harus memiliki gembok masing-masing maka produksi gembok akan semakin meningkat dan mendapatkan keuntungan yang banyak. apa perlu hal ini di terapkan agar orang-orang itu sadar akan apa yang dia lakukan itu melanggar hukum. saya rasa ini perlu menjadi pembeljaran untuk semua sebab dari hal kecil inilah kita akan tau jika hal besar lebih buruk dampaknya.

mari kita ciptakan lingkungan yang bebas dengan pencuri sendal...

REPRODUKSI SEL DAN ORGANISME

06 March 2013 07:21:37 Dibaca : 2937

Asalamualaikum wr.wb

Ini hanya materi rangkuman biologi semoga bermanfaat.

 

REPRODUKSI SEL DAN ORGANISME

v Reproduksi

Sel merupakan struktur terkecil dari makhluk hidup, oleh karena itu sel sangat menentukan fungsi dan bentuk dari organ atau jaringan yang disusunnya

Pembelahan sel mempunyai tujuan sebagai berikut :

1) Regenerasi sel-sel yang rusak/mati

2) Pertumbuhan dan perkembangan

3) Berkembang biak (reproduksi)

4) Variasi individu baru

Kita mengenal tiga jenis reproduski sel yaitu:

Pembelahan Amitosis

Amitosis adalah reproduksi sel di mana sel membelah diri secara langsung tanpa melalui tahap-tahap pembelahan sel.

Pembelahan Mitosis

Mitosis adalah proses pembagian genom yang telah digandakan oleh sel ke dua sel identik yang dihasilkan oleh pembelahan sel.

Tahap-tahap mitosis terdiri atas empat fase yaitu :

Profase

Pada awal profase, sentrosom dengan sentriolnya mengalami replikasi dan dihasilkan dua sentrosom. Masing-masing sentrosom hasil pembelahan bermigrasi ke sisi berlawanan dari inti.

Metafase

Masing-masing sentromer mempunyai dua kinetokor dan masing-masing kinetokor dihubungkan ke satu sentrosom oleh serabut kinetokor. Sementara itu, kromatid bersaudara begerak ke bagian tengah inti membentuk keping.

Anafase

Masing-masing kromatid memisahkan diri dari sentromer dan masing-masing kromosom membentuk sentromer. Masing-masing kromosom ditarik oleh benang kinetokor ke kutubnya masing-masing.

Telofase

Ketika kromosom saudara sampai ke kutubnya masing-masing, mulainya telofase. Kromosom saudara tampak tidak beraturan dan jika diwarnai, terpulas kuat dengan pewarna histologi.

Pembelahan Meiosis

Pembelahan meiosis disebut juga pembelahan reduksi, di karena terjadinya pengurangan jumlah kromosom dalam prosesnya dari 2n menjadi n. Pembelahan ini menghasilkan sel anakan dengan jumlah kromosom separuh dari jumlah kromosom sel induknya

Dalam pembelahan meiosis terjadi dua kali pembelahan sel secara berturut –turut, tanpa diselingi adanya interfase, yaitu tahap meiosis 1 dan meiosis 2 dengan hasil akhir 4 sel anak dengan jumlah kromosom haploid (n).

v Reproduksi Pada Tumbuhan Rendah dan Tumbuhan Tinggi

a. Reproduksi Pada Tumbuhan Rendah

Reproduksi Aseksual Pada Tumbuhan Rendah

Dalam reproduksi aseksual, suatu individu dapat melakukan reproduksi tanpa keterlibatan individu lain dari spesies yang sama.

Berikut adalah contoh-contoh reproduksi secara aseksual pada tumbuhan rendah.

Ø Fisi

Fisi terjadi pada organisme bersel satu. Pada proses fisi individu terbelah menjadi dua bagian yang sama.

Ø Pembentukan Spora

Dibentuk di dalam tubuh induknya dengan cara pembelahan sel.

Ø Pembentukan tunas

Organisme tertentu dapat membentuk tunas, berupa tonjolan kecil yang akan berkembang dan kemudian mempunyai bentuk seperti induknya dengan ukuran kecil.

Reproduksi Seksual Pada Tumbuhan Rendah

Reproduksi seksual adalah perkembangbiakan individu melalui persatuan gamet-gamet pada tumbuhan rendah.

Reproduksi ini dapat dilakukan dengan beberapa cara yaitu :

Ø Isogami

Isogami (Isogamy) adalah penyatuan dua gamet yang secara morfologis tidak berbeda, yaitu tidak terdiferensiasi dalam makro dan mikrogamet.

Ø Anisogami

Anisogami (Anisogamy) adalah keadaan yang melibatkan peleburan gamet-gamet yang berlainan ukuran dan/atau motilitasnya.

Ø Konyugasi

Konjugasi adalah perkembangbiakan secara seksual yaitu penyatuan dua gamet yang secara morfologis tidak diketahui betina dan jantannya.

Reproduksi secara aseksual alami diantaranya :

a) Stolon

Stolon adalah batang yang menjalar di atas tanah. Di sepanjang stolon dapat tumbuh tunas adventisia (liar), dan masing-masing tunas ini dapat menjadi anakan tanaman.

b) Akar Tinggal atau Rizoma

Rizom adalah batang yang menjalar di bawah tanah, dapat berumbi untuk menyimpan makanan maupun tak berumbi.

c) Tunas yang tumbuh di sekitar pangkal batang

Tunas ini membentuk numpun, misalnya: pohon pisang, pohon pinang dan pohon bambu.

d) Tunas liar

Tunas liar terjadi pada tumbuhan yang daunnya memiliki bagian meristem yang dapat menyebabkan terbentuknya tunas-tunas baru di pinggir daun.

e) Umbi lapis

Umbi lapis adalah batang pendek yang berada di bawah tanah. Umbi lapis diselubungi oleh sisik-sisik yang mirip kertas.

f) Umbi batang

Umbi batang adalah batang yang tumbuh di bawah tanah, digunakan sebagai tempat penyimpanan cadangan makanan sehingga bentuknya membesar.

g) Mencangkok

Suatu cara mengembangbiakkan tumbuhan dengan jalan menguliti batang yang ada lalu bungkus dengan tanah agar akarnya tumbuh.

h) Menyetek

Menyetek / Nyetek, adalah perkembangbiak tumbuhan dengan jalan menanam batang tanaman agar tumbuh menjadi tanaman baru.

i) Merunduk

Merunduk adalah teknik berkembang biak tumbuh-tumbuhan dengan cara menundukkan batang tanaman ke tanah dengan harapan akan tumbuh akar.

j) Mengenten/Menyambung

Menyambung / Mengenten, adalah perkembang biakan buatan yang biasanya dilakukan pada tumbuhan sejenis buah-buahan atau ketela pohon demi mendapatkan kualitas buat yang baik.

2. Reproduksi Seksual Pada Tumbuhan Tinggi

Alat perkembangbiakan secara sexual pada tumbuhan adalah bunga. Bunga (flos) atau kembang adalah struktur reproduksi seksual pada tumbuhan berbunga (divisio Magnoliophyta atau Angiospermae, "tumbuhan berbiji tertutup").

Pada bunga terdapat organ reproduksi (benang sari dan putik) yaitu:

a) Pembentukan gamet betina.

Pada Angiospermae gamet betina dibentuk di dalam bakal biji (ovule) atau kantung lembaga. Pada bagian ini terdapat sel induk megaspora (sel induk kantug lembaga) yang diploid. Sel ini akan membelah secara meiosis dan dari satu sel induk kantung lembaga membentuk 4 sel yang haploid.

b) Penyerbukan

Penyerbukan merupakan jatuhnya serbuk sari pada kepala putik (untuk golongan tumbuhan berbiji tertutup) atau jatuhnya serbuk sari langsung pada bakal biji (untuk tumbuhan berbiji telanjang).

v Reproduksi Pada Hewan Rendah dan Hewan Tinggi

a. Reproduksi Pada Hewan Rendah

1. Reproduksi aseksual pada hewan rendah

Reproduksi aseksual pada hewan lebih jarang terjadi daripada tumbuhan. Biasanya reproduksi aseksual merupakan suatu alternatif dan bukan pengganti dari reproduksi seksual.

Reproduksi secara aseksual pada hewan rendah dapat dilakukan dengan beberapa cara yakni :

a) Pertunasan

b) Pembelahan sel

c) Fragmentasi

d) Partenogenesis

v Reproduksi Seksual Pada Hewan Rendah

Selain melakukan reproduski secara aseksual, hewan rendah mampun melakukan reproduksi secara kawin, diantaranya sebagai berikut.

Ø Konjugasi yaitu persatuan antara dua individu yang belum mengalami spesialisasi sex. Terjadi persatuan inti (kariogami) dan sitoplasma (plasmogami).Ø Fusi yaitu persatuan/peleburan duya macam gamet yang belum dapat dibedakan jenisnya. Dibedakan menjadi 3 macam yaitu :Ø Isogami yaitu persatuan dua macam gamet yang memiliki bentuk dan ukuran yang sama.Ø Anisogami yaitu persatuan dua macam gamet yang berbeda ukuran dan bentuknya sama.Ø Oogami yaitu persatuan dua macam gamet yang memiliki ukuran dan bentuk yang tidak sama.

v Reproduksi Pada Hewan Tinggi

Pada hewan yang melakukan fertilisasi internal dikenal adanya 3 macam perkembangan embrio yaitu :

Ovipar/bertelurOvovivipar/bertelur dan beranakVivipar/beranak

v Alat Reproduksi Mammalia Jantan

Alat Reproduksi pada pria maupun wanita pada dasarnya sama dengan alat reproduksi pada mamalia lain. Pria menghasilkan gamet jantan atau spermatozoa yang berukuran sangat kecil dan berbentuk menyerupai berudu, sedangkan wanita menghasilkan sel telur (ovum) yang dibentuk di dalam ovarium.

ü Gametogenesis

Proses pembentukan gamet atau sel kelamin disebut gametogenesis, ada dua jenis proses pembelahan sel yaitu mitosis dan meiosis.Gametogenesis ada dua yaitu :

Spermatogenesis

Sel sperma yang bersifat haploid (n) dibentuk di dalam testis melewati sebuah proses kompleks yang disebut dengan spermatogenesis.

Oogenesis

Oogenesis merupakan proses pematangan ovum di dalam ovarium. Tidak seperti spermatogenesis yang dapat menghasilkan jutaan spermatozoa dalam waktu yang bersamaan, oogenesis hanya mampu menghasilkan satu ovum matang sekali waktu.

Sekian… mohon komentar atau kritikan jika ada kesalahan demi penyempurnaan.