Hukum ll Newton
Dandi Saputra Halidi
442417041
Judul :
HUBUNGAN GAYA DAN PERCEPATAN DALAM KEHIDUPAN
SEHARI HARI
Rumusan masalah
Bagaimana grafik yang menunjukkan hubunan percepatan rata-rata sebagai fungsi dari gaya yang dikerahkan (Fa) ?
Bagaimana grafik yang menunjukkan hubungan percepatan rata-rata sebaga fungsi dari massa balok beroda menggunakan grafik untuk menentukkan antara gaya yang diterapkan, massa, dan percepatan rata-rata balok ?
Bagaimana interpretasi grafik ?
Bagaimana eksperimen dapat membantu memperluas hasil-hasil untuk mengikutkan percepatan sesaat ?
Tujuan
Mahasiswa dapat mengetahui grafik yang menunjukkan hubunan percepatan rata-rata sebagai fungsi dari gaya yang dikerahkan (Fa).
Mahasiswa dapat mengetahui grafik yang menunjukkan hubungan percepatan rata-rata sebaga fungsi dari massa balok beroda menggunakan grafik untuk menentukkan antara gaya yang diterapkan, massa, dan percepatan rata-rata balok.
Mahasiswa dapat menginterpretasi grafik.
Mahasiswa dapat menegtahui eksperimen apa yang dapat membantu memperluas hasil-hasil untuk mengikutkan percepatan sesaat.
Dasar teori
Gaya adalah suatu pengaruh yang dapat mengubah kecepatan suatu benda. Gravitasi merupakan gaya interaksi fundamental yang ada di alam. Newton menemukan pada abad ke-17 bahwa interaksi yang terjadi pada buah apel yang jatuh dari pohonnya dan kmampuan planet mengorbit pada matahari mempunyai sifat yang sama.
Tidak ada suatu kejelasan mengenai hubungan yang mempengaruhi gerakan sebuah objek. Fakta menunjukkan hubungan itu diperoleh 4000 tahun setelah peradaban dan kejeniusan Isaac Newton dalam menyatakan hukum-hukum dasar tersebut. Untungnya, bagi kita hukum-hukum dasar itu merupakan alat penelitian yang sangat berguna. Dalam eksperimen ini akan ditentukan eksperimental hukum ke-2 newton dengan mempelajari kereta pada Valma ramp dibawah pengaruh gaya tetap. Gaya yang tetap ini diperoleh dengan menggantungkan sebuah massa pemberat yang akan digunakan untuk menarik kereta. Dengan mengubah-ubah berat kereta dan mengukur percepatan suatu kereta, akan dapat ditentukan hukum ke-2 newton. Suatu gaya total yang diberikan pada sebuah benda mungkin menyebabkan lajunya bertambah atau jika gaya total itu mempunyai arah yang berlawanan dengan gerak, gaya tersebut akan memperkecil laju benda itu. Jika arah gaya total yang bekerja berbeda dengan arah sebuah benda yang bergerak, maka arah kecepatannya akan berubah (dan mungkin besarnya juga) karena perubahan laju atau kecepatan merupakan percepatan. Hukum II Newton menyatakan “percepatan sebuah benda berbanding lurus dengan gaya total yang bekerja padanya dan berbanding terbalik dengan massanya. Arah percepatan sama dengan arah gaya total yang bekerja padanya”.
secara matematis Hukum II Newton dapat ditulis :
a= (∑F)/m
Dengan :
a adalah percepatan satuannya m/s2
m adalah massa benda satuannya kg
∑F adalah gaya total satuannya Newton (N)
Newton berpendapat bahwa kecepatan akan berubah. Suatu gaya total yang diberikan pada sebuah benda mungkin menyebabkan lajunya bertambah atau jika gaya total itu mempunyai arah yang berlawanan dengan gerak, gaya tersebut akan memperkecil laju benda itu. Jika arah gaya total yang bekerja berbeda dengan arah sebuah benda yang bergerak, maka arah kecepatannya akan berubah (dan mungkin besarnya juga).
Karena perubahan laju atau kecepatan merupakan percepatan dapat kita katakana bahwa gaya total menyebabkan percepatan. Bayangkan gaya yang diperlukan untuk mendorong sebuah gerobak yang gesekannya minimal. (jika ada gesekan, bayangkanlah gaya total, yang merupakan gaya yang anda berikan dikurangi gaya gesekan). Sekarang jika anda mendorong dengan pelan tetapi dengan gaya yang konstan selama selang waktu tertentu, anda akan mempercepat gerobak tersebut dari keadaan diam sampai laju tertentu, katakanlah 3 km/jam. Jika anda mendorong dengan gaya dua kali lipat, anda akan mendapatkan bahwa gerobak tersebut mencapai 3 km/jam dalam waktu setengah kali sebelumnya. Berarti, percepatan akan dua kali lipat lebihbesar. Jika anda menggandakan gaya, percepatan akan menjadi dua kali lipat pula. Jika anda melipattigakan gaya, percepatan juga menjadi tiga kali lipat., dan seterusnya. Dengan demikian, percepatan sebuah benda berbanding lurus dengan gaya total yang diberikan. Tetapi percepatan juga bergantung pada massa benda. Jika anda mendorong gerobak yang kosong dengan gaya yang sama seperti ketika anda mendorong gerobak yang penuh, anda akan menemukan bahwa gerobak yang penuh mempunyai percepatan yang lebih lambat. Makin besar massa makin kecil percepatan, walaupun gayanya sama. Hubungan matematisnya, seperti dikemukakan newton, adalah percepatan sebuah benda berbanding terbalik dengan massanya. Hubungan ini ternyata berlaku secara umum dan dapat dirangkum sebagai berikut: Percepatan sebuah benda berbanding lurus dengan gaya total yang bekerja padanya dan berbanding terbalik dengan massanya. Arah percepatan sama dengan arah gaya total yang bekerja padanya.
Hukum pertama Newton menyatakan bahwa jika ada gaya total yang bekerja pada sebuah benda, benda tersebut akan tetap diam , atau jika sedang bergerak, akan tetap bergerak dengan laju konstan dalam garis lurus. Newton berpendapat bahwa kecepatan akan berubah.
Suatu gaya total yang diberikan pada sebuah benda mungkin menyebabkan lajunya bertambah. Karena perubahan laju atau kecepatan merupakan percepatan, dapat dikatakan bahwa gaya total menyebabkan percepatan.
Hubungan antara percepatan dan gaya dapat kita lihat di kehidupan sehari-hari. Bayangkan gaya yang diperlukan untuk mendorong sebuah gerobak yang gesekannya minimal. Jika anda mendorong gerobak tersebut dengan pelan tetapi dengan gaya yang konstan selama selang waktu tertentu.
Gaya dan massa mempunyai akibat yang berbeda terhadap percepatan. Semakin besar massa benda, semakin kecil percepatannya. Sebagai contoh, jika kita pasangkan sebuah mesin yang sama pada sebuah sedan dan sebuah truk, kita akan memperoleh percepatan yang berbeda antara sedan dan truk itu meskipun mesin yang dipakai sama sehingga gaya yang dihasilkan sama.
Truk yang mempunyai massa lebih besar, memiliki kelembaman yang lebih besar terhadap perubahan kecepatan daripada sedan. Sehingga truk membutuhkan mesin yang lebih kuat untuk menyamai percepatan sedan. Untuk percepatan yang sama, massa yang lebih besar membutuhkan gaya yang lebih besar. Kita katakan percepatan benda berbanding terbalik dengan massa. Maka percepatan suatu benda, bergantung pada gaya total yang bekerja pada benda dan massa benda.
Referensi :
Team teaching. 2017. Penuntun Praktikum Fisika Dasar 1. Gorontalo : Laboratorium Fisika UNG.
Giancoli, Douglas C.2001. FISIKA Edisi kelima Jilid 1. Jakarta : Erlangga
http://27/11/2014.penjelasan-hukum-ii-newton.html.
SILABAN.*ANTER dan SUCIPTO ERWIN 2001.fisika jilid 1 edisi ketiga JAKARTA : ERLANGGA
Variable
Variabel Bebas : Massa
Variabel Terikat : Waktu
Variabel Kontrol : Posisi awal kereta meluncur
Alat dan Bahan
Satu set valma ramp
Photogate timer dan accessoriesnya
Berbagai beban tambahan dengan massa
Pengait dan benang
Prosedur kerja
Menyusun valma ramp seperti pada gambar 3.1 yang ada pada penuntun. Mengusahakan posisi valma ramp mendatar. Memperhatikan terdapat kereta.
Mengangkat dan menimbang kereta tersebut dengan massa tambahan sebesar 40-50 gram. Menghitung massa total kereta beserta massa tambahan dan mencata pada tabel 3.1 sebagai m.
Mengukur lebar efektif plat (kuning) yang ada pada kereta. Plat inilah yang akan ditringer oleh photogate timer, mencatat lebarnya sebagai L pada tabel 3.1.
Menempatkan massa 5-10 gram pada hanger. Menimbang massa totalnya sebagai ma, mencatat dalam tabel 3.1.
Menghubungkan ma yang digantung pada ujung valma ramp menggunakan benang pada ujung kereta (diusahakan horizontal).
Kemudian mengatur photogate ke mode GATE. Lalu menekan tombol RESET.
Melepaskan balok beroda dari ujung kiri. Memberikan gaya tolakan sekecil mungkin jika kereta tidak bergerak.
Mencatat t1 yaitu waktu yang diperlukan oleh plat melewati photogate pertama dan t2 untuk photogate kedua.mengulangi pengukuran ini minimal sebanyak 3 kali. Mengambil rata-rata dari pengukuran t1 dan t2. Mencatat hasilnya sebagai t1 rata-rata dan t¬2 rata-rata dalam tabel 3.1.
Mengatur mode photogate ke mode PULSE. Menekan tombol RESET.
Sekali lagi melepaskan kereta. Mencatat waktu yang ditunjukkan oleh photogate sebagai t3, yakni waktu yang diperlukan oleh plat untuk melewati kedua photogate timer. Mengulangi pengukuran ini minimal sebanyak 3 kali dan mencatat rata-ratanya ke dalam tabel 3.1.
Mengubah ma dengan memindahkan massa tambahan pada kereta ke hanger yang tergantung (usahakan m = ma tetap). Mencatat kembali m dan ma, lalu mengulangi langkah 6-11 untuk variasi m dan ma minimal sebanyak 4 kali.
Tabel 3.1 Hasil Pengamatan
L =………… satuan
M (satuan) Ma (satuan) t1 (satuan) t1 + t2 (satuan) t3 (satuan)
Tabel 3.1 Hasil Pengamatan
L = 2,5 cm
M (gr) Ma (gr) t1 (s) t2 (s)
363,5 14,8 0,4162 0,4062
0,4440 0,4383
0,4662 0,4757
353,5 15,8 0,4588 0,4106
0,4629 0,4321
0,4971 0,4509
NST neraca mekanik duduk : 0,1 gr
NST Mistar : 0,1 cm
PENGOLAHAN DATA PF-3
HUKUM II NEWTON
Mencari Nilai (M) dan (Ma) yang berubah-ubah
Untuk Mâ‚
Mâ‚ = 363,5 gr = 0,3635 kg
∆Mâ‚ = ½ nst neraca mekanik duduk
= ½ x 0,1 gr = 0,05 gr = 0,00005 kg
KR = (∆Mâ‚)/(Mâ‚) x 100%
= 0,00005/0,3635 x 100% = 0,013 % = 5 AP
(M₱∆Mâ‚) = ( 3,6350 ±0,0005) 10-1 kg
Untuk M2
M2 = 353,5 gr = 0,3535 kg
∆Mâ‚‚ = ½ nst alat ukur
= ½ x 0,1 gr = 0,05 gr = 0,00005 kg
KR = (∆M₂)/(M₂) x 100%
= 0,00005/0,3535 x 100% = 0,014 % = 5 AP
(Mâ‚‚±âˆ†Mâ‚‚) = ( 3,5350 ±0,0005) 10-1 kg
Untuk Maâ‚
Maâ‚ = 14,8 gr = 0,0148 kg
∆Maâ‚ = ½ nst alat ukur
= ½ x 0,1 gr = 0,05 gr = 0,00005 kg
KR = (∆Maâ‚)/(Maâ‚) x 100%
= 0,00005/0,0148 x 100 % = 0,33 % = 4 AP
(Ma₱∆Maâ‚) = (1,480±0,005) 10-2 kg
Untuk Ma2
Ma2 = 15,8 gr = 0,0158 kg
∆Maâ‚‚ = ½ nst alat ukur
= ½ x 0,1 gr = 0,05 gr = 0,00005 kg
KR = (∆Ma₂)/(Ma₂) x 100%
= 0,00005/0,0158 x 100 % = 0,31 % = 4 AP
(Maâ‚‚±âˆ†Maâ‚‚) = (1,580±0,005) 10-2 kg
Mencari Nilai t (waktu), v (kecepatan), a (percepatan), dan F (gaya)
Menghitung t (waktu)
Untuk data Mâ‚ dan Maâ‚
Untuk t1
t₠(s) t₲ (s)
0,4162 s
0,4440 s
0,4662 s 0,1732 s
0,1971 s
0,2173 s
∑tâ‚ = 1,3264 s ∑t₲ = 0,5876 s
(∑tâ‚)²= 1,75933 s
tâ‚ = (∑tâ‚)/n = 1,3264/3 = 0,44 s
∆tâ‚ = = √((n .Σt^2-(Σ〖t)〗^2)/(n^2 (n-1))) = √((3 . 0,5876-1,75933)/(3² (3-1)))
= √((1,7628-1,75933)/18) = √(0,00347/18)= √0,000192 = 0,013 s
Kr = (∆tâ‚)/(tâ‚) x 100%
= 0,013/0,44 x 100% = 2,95 % 3 A.P
(tâ‚ ± ∆tâ‚ )= (4,40±0,01) 10-1 s.
Untuk t2
t2 (s) t2² (s)
0,4067 s
0,4383 s
0,4757 s 0,1654 s
0,1921 s
0,2262 s
∑t2 = 1,3207 s ∑t2² = 0,5837 s
(∑t2)²= 1,74424 s
tâ‚ = (∑tâ‚)/n = 1,3207/3 = 0,44 s
∆tâ‚ = = √((n .Σt^2-(Σ〖t)〗^2)/(n^2 (n-1))) = √((3 . 0,5837-1,74424)/(3² (3-1)))
= √((1,7511-1,74424)/18) = √(0,00686/18)= √0,00038 = 0,019 s
Kr = (∆tâ‚)/(tâ‚) x 100%
= 0,019/0,44 x 100% = 4,31 % 3 A.P
(tâ‚ ± ∆tâ‚ )= (4,40±0,01) 10-1 s.
Untuk t3
t3 (s) t3² (s)
0,5501 s
0,5659 s
0,5425 s 0,30261 s
0,32024 s
0,29430 s
∑t3 = 1,6585 s ∑t3² = 0,91715 s
(∑t3)²= 2,75062 s
t3 = (∑t₃)/n = 1,6585/3 = 0,55 s
∆t₃ = = √((n .Σt^2-(Σ〖t)〗^2)/(n^2 (n-1))) = √((3 . 0,91715-2,75062)/(3² (3-1)))
= √((2,75145-2,75062)/18) = √0,000046 = 0,006 s
Kr = (∆t₃)/(t₃) x 100%
= 0,006/0,55 x 100% = 1,09 % = 3 AP
(t₃ ± ∆t₃ )= (5,50±0,06) 10-1 s.
Untuk data Mâ‚‚ dan Maâ‚‚
Untuk t1
t₠(s) t₲ (s)
0,4321 s
0,4487 s
0,4300 s 0,18671 s
0,20133 s
0,1849 s
∑tâ‚ = 1,3108 s ∑t₲ = 0,57294 s
(∑tâ‚)²= 1,718196 s
tâ‚ = (∑tâ‚)/n = 1,3108/3 = 0,43 s
∆tâ‚ = √((n .Σt^2-(Σ〖t)〗^2)/(n^2 (n-1))) = √((3 . 0,57294-1,718196)/(3² (3-1)))
= √((1,71882-1,718196)/18) = √0,0000347 = 0,005 s
Kr = (∆tâ‚)/(tâ‚) x 100%
= 0,005/0,43 x 100% = 1,16 % = 3 AP
(tâ‚ ± ∆tâ‚ )= (4,30±0,05) 10-1 s.
Untuk t2
t2 (s) t2² (s)
-0,0716 s
-0,0279 s
0,0757 s 0,005126 s
0,000778 s
0,005730 s
∑t2 = -0,0238 s ∑t2² = 0,0116 s
(∑t2)²= 0,00056 s
t2 = (∑tâ‚‚)/n = (-0,0238)/3 = -0,0079 s
∆tâ‚‚ = √((n .Σt^2-(Σ〖t)〗^2)/(n^2 (n-1))) = √((3 . 0,0116-0,00056)/(3² (3-1)))
= √((0,0348-0,00056)/18) = √0,0019 = 0,04 s
Kr = (∆t₂)/(t₂) x 100%
= 0,04/0,42 x 100% = 9,5 % = 2 AP
(t¬2 ± ∆tâ‚‚ )= (4,2±0,4) 10-1 s.
Untuk data M2 dan Ma2
Untuk t1
t1 (s) t1² (s)
0,4588 s
0,4629 s
0,4971 s 0,2104 s
0,2142 s
0,2471 s
∑t1 = 1,4188 s ∑t1² = 0,6717 s
(∑t1)²= 2,01299 s
tâ‚ = (∑tâ‚)/n = 1,4188/3 = 0,47 s
∆tâ‚ = = √((n .Σt^2-(Σ〖t)〗^2)/(n^2 (n-1))) = √((3 . 0,6717-2,01299)/(3² (3-1)))
= √((2,0151-2,01299)/18) = √(0,00211/18)= √0,00017 = 0,010 s
Kr = (∆tâ‚)/(tâ‚) x 100%
= 0,010/0,47 x 100% = 2,12 % 3 A.P
(tâ‚ ± ∆tâ‚ )= (4,70±0,01) 10-1 s
Untuk t2
t2 (s) t2² (s)
0,4106 s
0,4321 s
0,4509 s 0,1685 s
0,1867 s
0,2033 s
∑t1 = 1,2936 s ∑t1² = 0,5585 s
(∑t1)²= 1,67340 s
tâ‚ = (∑tâ‚)/n = 1,2936/3 = 0,43 s
∆tâ‚ = = √((n .Σt^2-(Σ〖t)〗^2)/(n^2 (n-1))) = √((3 . 0,5585-1,67340)/(3² (3-1)))
= √((1,6755-1,67340)/18) = √(0,0021/18)= √0,00011 = 0,010 s
Kr = (∆tâ‚)/(tâ‚) x 100%
= 0,010/0,43 x 100% = 2,32 % 3 A.P
(tâ‚ ± ∆tâ‚ )= (4,30±0,01) 10-1 s
Menghitung v (kecepatan)
Untuk menghitung V1
Untuk M1 dan Ma1
Menghitung V1
V1 = L/t_1 = 0,025/0,44 = 0,056 m/s
∆Vâ‚=|∆L/L|+|(∆t_1)/t_1 | × V_1
= |0,00005/0,025|+|0,013/0,44| x 0,056 = 0,002 + 0,029 x 0,056
= 0,0017 m/s
KR=〖∆V〗_1/V_1 ×100%
= 0,0017/0,056 x 100% = 3,03 % = 3 AP
( V_1± ∆V_1 ) = (5,60 ± 0,01) 10-2 m/s
Untuk menghitung Vâ‚‚
Vâ‚‚ = L/t_â‚‚ = 0,025/0,44 = 0,056 m/s
∆Vâ‚‚=|∆L/L|+|(∆tâ‚‚)/t_â‚‚ | × V_1
= |0,00005/0,025|+|0,019/0,44| x 0,056 = 0,002 + 0,043 x 0,056
= 0,0025 m/s
KR=〖∆V〗_â‚‚/(Vâ‚‚)×100%
= 0,0025/0,056 x 100% = 4,46 % = 3 AP
( V_â‚‚± ∆V_â‚‚ ) = (5,60 ± 0,02) 10-2 m/s
Untuk M2 dan Ma2
Menghitung V1
V1 = L/t_1 = 0,025/0,47 = 0,053 m/s
∆Vâ‚=|∆L/L|+|(∆t_1)/t_1 | × V_1
= |0,00005/0,025|+|0,010/0,47| x 0,053 = 0,002 + 0,021 x 0,053
= 0,0012 m/s
KR=〖∆V〗_1/V_1 ×100%
= 0,0012/0,053 x 100% = 2,26 % = 3 AP
( V_1± ∆V_1 ) = (5,30 ± 0,01) 10-2 m/s
Untuk menghitung Vâ‚‚
Vâ‚‚ = L/t_â‚‚ = 0,025/0,43 = 0,058 m/s
∆Vâ‚‚=|∆L/L|+|(∆tâ‚‚)/t_â‚‚ | × V_1
= |0,00005/0,025|+|0,010/0,43| x 0,058 = 0,002 + 0,023 x 0,058
= 0,0014 m/s
KR=〖∆V〗_â‚‚/(Vâ‚‚)×100%
= 0,0014/0,058 x 100% = 2,41 % = 3 AP
( V_â‚‚± ∆V_â‚‚ ) = (5,80 ± 0,01) 10-2 m/s
Menghitung a percepatan
Untuk a1
a_1= ((V_2-V_1 ))/t_1 = ((0,056-0,053))/0,44 = 0,003/0,44 = 0,006 m/s
∆a_1= |(∆V_2)/V_2 |+|(∆V_1)/V_1 |+|(∆t_1)/t_1 | ×a_1
= |0,0025/0,056|+|0,0012/0,053|+|0,013/0,44| x 0,006
= 0,044 + 0,022 + 0,029 x 0,006
= 0,095 x 0,006 = 0,00057 m/s.
KR=〖∆a〗_1/a_1 ×100%
= 0,00057/0,006 x 100% = 9,5 % = 3 AP
( a_1± ∆a_1 ) = (6,0±0,5) 10-3 m/s2.
Untuk a2
a_2= ((V_2-V_1 ))/(tâ‚‚) = ((0,058-0,056))/0,43 = 0,002/0,43 = 0,004 m/s
∆a_2= |(∆V_2)/V_2 |+|(∆V_1)/V_1 |+|(∆t_2)/(tâ‚‚)| ×a_2
= |0,0014/0,058|+|0,0017/0,056|+|0,010/0,43| x 0,004
= 0,024 + 0,030 + 0,023 x 0,004
= 0,077 x 0,004 = 0,0003 m/s.
KR=〖∆a〗_2/(aâ‚‚)×100%
= 0,0003/0,004 x 100% = 7,5 % = 2 AP
( a_2± ∆aâ‚‚ ) = (4,0±0,3) 10-3 m/s2.
Menghitung Gaya (F)
Untuk Ma1
Ma1 = 14,8 gr = 0,0148 kg
Fa1 = Ma1 × g = 0,0148 x 9,8 = 0,14504 N
∆〖Fa〗_1= |(∆〖Ma〗_1)/〖Ma〗_1 | × ã€–Fa〗_1
= |0,00005/0,0148| x 0,14504 = 0,00049 N
KR=〖∆Fa〗_1/(Fa_1 )×100%
= 0,00049/0,14504 x 100% = 0,33 % = 4 AP
( 〖Fa〗_1± ∆Fa_1 ) = (1,450± 0,004) 10 N
Untuk Ma2
Ma2 = 15,8 gr = 0,0158 kg
Fa2 = Ma2 × g = 0,0158 x 9,8 = 0,15484 N
∆〖Fa〗_2= |(∆〖Ma〗_2)/(Maâ‚‚)| × ã€–Fa〗_2
= |0,00005/0,0158| x 0,1548 = 0,00049 N
KR=〖∆Fa〗_2/(Fa_2 )×100%
= 0,00049/0,15484 x 100% = 0,31 % = 4 AP
( 〖Fa〗_2± ∆Fa_2 ) = (1,548± 0,004) 10 N
Tabel-tabel Hubungan Hasil Pengamatan
Tabel hubungan antara a dengan Fa
No a (a ± ∆a) m/s2 Fa (Fa ± ∆Fa) N
1.
2. (6,0±0,5) 10-3 m/s2
(4,0±0,3) 10-3 m/s2 (1,450± 0,004) 10 N
(1,548± 0,004) 10 N
Tabel hubungan antara a dengan Ma
No a (a ± ∆a) m/s2 Ma (Ma ± ∆Ma) kg
1.
2. (6,0±0,5) 10-2 m/s2
(4,0±0,3) 10-2 m/s2 (1,480±0,005) 10-2 kg
(1,580±0,005) 10-2 kg
Membuat grafik hubungan antara a dengan Fa
Interpretasi grafik
Berdasarkan grafik di atas dapat disimpulkan bahwa hubungan antara percepatan (a) dengan gaya (F) berbanding terbalik. Karena gaya pada saat bekerja mengalami pengurangan sebaliknya percepatan pada saat bekerja mengalami pertambahan.
Menghitung Kemiringan Grafik
∆Fa=Fa_2-Fa_1
= 0,15484 – 0,14504 = 0,0098 N
∆a= a_2-a_1
= 0,004 – 0,006 = 0,002 m/s2.
∂(∆Fa)=1/2 nst grafik
= ½ x 0,1 mm = 0,05 mm = 0,00005 m
∂(∆a)=1/2 nst grafik
= ½ x 0,1 mm = 0,05 mm = 0,00005 m
M = ∆Fa/∆a = 0,098/0,002 = 49 kg
∆M= |∂(∆Fa)/∆Fa|+ |∂(∆a)/∆a| ×M
= |0,00005/0,0098|+ |0,00005/0,002| x 49
= 0,0051 + 0,0025 x 4,9 = 0,14 kg
KR= ∆M/M ×100 %
= 0,14/4,9 x 100% = 2,85 % = 3 AP
( M± ∆M)= (4,90± 0,01)10 kg
Membuat grafik hubungan antara a dengan Ma
Interpretasi grafik
Berdasarkan grafik di atas dapat disimpulkan bahwa hubungan antara percepatan (a) dengan massa benda (Ma) berbanding terbalik. Karena massa dberkurang. sebaliknya percepatannya bertambah.
Menghitung kemiringan grafik
∆Ma=〖Ma〗_(2 )- 〖Ma〗_(1 )
= 0,0158 – 0,0148 = 0.001 kg
∆a=a_(2 )- a_(1 )
= 0,004 – 0,006 = 0,002 m/s2
∂(∆Ma)=1/2 nst grafik
= ½ x 0,1 mm = 0,05 mm = 0,00005 m
∂(∆a)=1/2 nst grafik
= ½ x 0,1 mm = 0,05 mm = 0,00005 m
M = ∆Ma/∆a = 0,001/0,002 = 0,5 kg
∆M= |∂(∆Ma)/∆Ma|+ |∂(∆a)/∆a| ×M
= |0,00005/0,001|+ |0,00005/0,002| x 5
= 0,05 + 0,025 x 0,5 = 0,0375 kg
KR= ∆M/M ×100 %
= 0,0375/0,5 x 100% = 7,5 % = 2 AP
( M± ∆M)= (5,0± 0,3). 10 kg
Kesimpulan
Bunyi Hukum II Newton yaitu : Percepatan sebuah benda berbanding lurus dengan gaya total yang bekerja padanya dan berbanding terbalik dengan massanya. Arah percepatan sama dengan arah gaya total yang bekerja padanya.
Kemungkinan kesalahan
Kurangnya keterampilan praktikan menggunakan alat.
Kesalahan dalam pencatatan waktu menggunakan photogate timer.